Voir le sujet précédentAller en basVoir le sujet suivant
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 14:49
Pour se faire plaisir pendant les vacances.

Allez, je commence humblement.
Un problème issu d'un bulletin de l'APMEP.

Pour n∈N*, on note σ(n) la somme des diviseurs (dans N*) de n. Si n est divisible par 24, en est-il de même de σ(n-1) ?

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 15:04
Je propose un problème, il convient que j'en propose une solution.
J'ai essayé d'en faire une qui n'utilise pas le modulo (au point que cela parait parfois un peu artificiel, mais passons), mais elle est facilement modifiable, comme vous pourrez le voir.

Si vous trouvez d'autres solutions, elles m'intéressent. A votre bon cœur, donc. Very Happy

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
Bourriquet
Bourriquet
Niveau 10

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Bourriquet Mer 26 Oct 2011 - 15:25
J’en ai un autre beaucoup plus dur, si quelqu’un trouve la solution, je lui offre le champagne.

Énoncé
J’ai 24 h de présence devant les élèves.
Je dois caser, de façon hebdomadaire, 10h de français, 5h de maths, 3h d’EPS, 3h d’allemand, 2h15 d’histoire-géo-sciences, 2h15 de musique et d’arts visuels (histoire de l’art incluse), 1h de religion, 80 minutes de récrés.

Et puis ajoutons, pour le fun, 1h d’instruction civique avec le conseil, 2h20 de gestion de conflits, 3h de piscine, faire le calcul mental, 4x20 minutes pour écrire les devoirs, 10 minutes par jour pour ramasser les papiers dans la cour, 5 minutes par demi-journée pour attendre ceux qui sont allés faire pipi, nettoyer les pinceaux et les palettes, ranger le matériel de sport, surveiller les récrés, soigner les genoux écorchés, ramasser le vomi, vérifier les signatures dans les cahiers et ramasser les punitions, faire de la relaxation, répondre aux parents dans le cahier de correspondance, faire de la lecture, de la conjugaison, de l’orthographe, de la grammaire, du vocabulaire, de l’écriture, de la géométrie, des mesures, du calcul, de la peinture, du chant, du dessin, de la patinoire, leur lire des histoires, faire de la bio, de la physique, de la chimie, de l’histoire, de la géographie, de la photo, de la sculpture, leur apprendre à chanter, à taper sur des percussions, à écouter, leur apprendre à parler, à obéir, à se taire, à s’asseoir, à faire leurs lacets, à débloquer leur tirette, à se laver les mains en sortant des toilettes, à ne pas s’insulter, à ne pas se frapper, à ne pas courir dans les couloirs, à ne pas traverser sans regarder à gauche et à droite, à compter les carreaux dans leur cahier, à trouver la bonne page dans le livre, à manger équilibré, à respecter leur environnement, à avoir une conduite éco-citoyenne, à chanter la marseillaise, à débattre sur des dictons, à me regarder quand je parle, à se taire, à lire.

Question
Sachant cela, proposer un emploi du temps réaliste qui inclura toutes les demandes de l’institution + la réalité.

Aide à la résolution
Ce que je cherche : …………………………………………………………
Opération : …………………………………………………………………….
Réponse : ………………………………………………………………………
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 15:29
veneration

Trop dur.
Je crois que tu as oublié : lire la lettre de Guy Môquet.

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
Bourriquet
Bourriquet
Niveau 10

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Bourriquet Mer 26 Oct 2011 - 15:32
Pfff, alors personne ne peut m'aider ?? Sérieusement, je suis en train de faire mon emploi du temps pour la 2e période, et 27h40 ne rentrent pas dans 24h... pale

_________________
mon blog de bd :http://clairedebulle.blogspot.fr
ou là : https://www.facebook.com/pages/Claire-de-Bulle/460647100703982
ou là : https://twitter.com/ClairedeBulle0
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 15:35
Maître-mot : transdisciplinarité.
1h de musique-mathématiques.
1h de français-HG.
1h d'EPS-sciences.
etc.

Et le tour est joué.

Evil or Very Mad

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
Bourriquet
Bourriquet
Niveau 10

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Bourriquet Mer 26 Oct 2011 - 15:55
Trop fort !! Tu as entièrement raison, c'est d'ailleurs comme ça qu'on doit faire... le mieux, c'est d'essayer dans une classe à triple niveau !!

"Allez, les moyens, on arrête de sucer les pinceaux, on range ! Les CP, venez ici, on va découper des carrés ! Les CE2 pendant ce temps vous allez faire un exercice pour apprendre à reconnaître le verbe !"

_________________
mon blog de bd :http://clairedebulle.blogspot.fr
ou là : https://www.facebook.com/pages/Claire-de-Bulle/460647100703982
ou là : https://twitter.com/ClairedeBulle0
Bourriquet
Bourriquet
Niveau 10

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Bourriquet Mer 26 Oct 2011 - 15:58
musique-mathématique : je le fais, je leur apprends les tables en chanson, avec la guitare !
Français-histoire : ça se pratique, puisqu'ils ont des textes à lire en histoire.
EPS-sciences, c'est aussi notre spécialité : quand on s'échauffe, on échauffe les articulations, on tire bien sur les muscles, on écoute battre son coeur...

_________________
mon blog de bd :http://clairedebulle.blogspot.fr
ou là : https://www.facebook.com/pages/Claire-de-Bulle/460647100703982
ou là : https://twitter.com/ClairedeBulle0
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 16:03
Bourriquet a écrit:Trop fort !! Tu as entièrement raison, c'est d'ailleurs comme ça qu'on doit faire... le mieux, c'est d'essayer dans une classe à triple niveau !!
Je m'en doutais, malheureusement.

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 16:05
Allez, un problème de géométrie, assez joli.

Soit ABC un triangle, dont les trois angles sont supposés aigus (un triangle acutangle, donc, si vous préférez), pour simplifier le problème.
Soient D, E et F les pieds respectifs des hauteurs respectivement issues des sommets A, B et C.
Soient D2 et D3 les projections de D respectivement sur [AC] et [AB].
Soient E1 et E3 les projections de E respectivement sur [BC] et [AB].
Soient F1 et F2 les projections de F respectivement sur [BC] et [AC].

Démontrer que les longueurs D2D3, E1E3, et F1F2 sont égales.

Propositions de problèmes de maths pour les collègues Cercle10

Remarque : on pourra démontrer que les points D2, D3, E1, E3, F1 et F2 sont sur un cercle.

PS : merci à FD, Bottema et Taylor.

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 16:41
On pourra aussi démontrer que les côtés opposés de l'hexagone formé par les projetés orthogonaux (hexagone en vert sur la figure), sont parallèles.

Propositions de problèmes de maths pour les collègues Cercle12

PS : je crois que je vais essayer d'écrire un DM sur ce sujet. Ça me plait décidément beaucoup Razz

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 22:09
Allez, un autre, plus facile, et qui commence à être connu Rolling Eyes

On prend une feuille de carton, carré ABCD de 1m de côté.

On y découpe quatre carrés superposables issus des sommets A, B, C et D.
Par exemple, on découpe le carré AEFG, de côté x (tel que x< AB/2), et tel que E est un point de [AB] et G un point de [AD].

Même chose, mutatis mutandis, pour les trois autres (cf la figure ci-dessous).

Propositions de problèmes de maths pour les collègues Boite10

On plie selon les pointillés [FF'], etc. pour obtenir une boite (sans couvercle).

Question : à quoi doit être égal x = AE pour que la boite soit de volume maximal ?

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mer 26 Oct 2011 - 22:54
Petit indice très intuitif pour ceux qui sèchent:


_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
mathmax
mathmax
Expert spécialisé

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par mathmax Dim 30 Oct 2011 - 18:12
JPhMM a écrit:Pour se faire plaisir pendant les vacances.

Allez, je commence humblement.
Un problème issu d'un bulletin de l'APMEP.

Pour n∈N*, on note σ(n) la somme des diviseurs (dans N*) de n. Si n est divisible par 24, en est-il de même de σ(n-1) ?

J'ai une solution très moche, qui utilise la table de multiplication modulo 24 des nombres premiers. Ta solution est-elle élégante? (je résiste pour l'instant à la tentation de la regarder).
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Lun 31 Oct 2011 - 22:54
mathmax a écrit:J'ai une solution très moche, qui utilise la table de multiplication modulo 24 des nombres premiers. Ta solution est-elle élégante? (je résiste pour l'instant à la tentation de la regarder).
Le fait que je me refuse d'utiliser les modulo ne la rend pas des plus élégantes, non, mais elle y gagne en devenant compréhensible pour ceux (parmi les collègues dans d'autres matières) qui ne connaissent pas le modulo.

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
avatar
Invité
Invité

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Invité Mar 1 Nov 2011 - 0:17
Vos avis de profs de maths sur l'activité présentée ici ?
http://calgaryscienceschool.blogspot.com/2011/10/inquiry-in-math.html
avatar
pk
Habitué du forum

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par pk Mar 1 Nov 2011 - 0:24
Ben, ils gardent leur chapeau en classe, pis ils pensent comme des mathématiciens sur un joli tableau blanc, pis y a plein de couleurs au tableau et ils écrivent des trucs qui leur passent par la tête. C'est top cool.
avatar
Invité
Invité

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Invité Mar 1 Nov 2011 - 0:43
pk a écrit:Ben, ils gardent leur chapeau en classe, pis ils pensent comme des mathématiciens sur un joli tableau blanc, pis y a plein de couleurs au tableau et ils écrivent des trucs qui leur passent par la tête. C'est top cool.

J'ai juste demandé un avis de prof de maths. Pourquoi directement passer au mépris ?

Le contexte :
http://www.calgaryscienceschool.com/
http://www.ic.gc.ca/eic/site/pmate-ppmee.nsf/fra/wz01084.html#lindsay_johnston
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mar 1 Nov 2011 - 0:48
Demain, si vous le permettez, Mila.
Il est tard.

En attendant, que pensez-vous, vous :
- des narrations de recherche ?
- de Britt-Mari Barth ?

(Mais posant ces questions, j'ai déjà en partie répondu à la vôtre, il me semble. Wink Qu'importe, j'y répondrai tout de même demain tout à l'heure).

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mar 1 Nov 2011 - 15:46
milasaintanne a écrit:Vos avis de profs de maths sur l'activité présentée ici ?
http://calgaryscienceschool.blogspot.com/2011/10/inquiry-in-math.html
Je suis d'accord avec l'idée qu'il est nécessaire, en mathématiques, de faire des mathématiques. Bien sûr, cela semble une tautologie, mais "faire des mathématiques" ce n'est pas "faire des exercices de mathématiques", entendu que ces exercices n'ont souvent aucun enjeu relatif à la science mathématique. Est-ce à dire qu'ils sont à bannir ? certainement pas, ils permettent de développer certaines compétences (mot à la mode) mathématiques. Et nous touchons là un premier paradoxe. Parfois, faire des mathématiques ne permet pas de développer des compétences attendues en mathématiques, car ces compétences sont de l'ordre des mathématiques scolaires, et non des mathématiques savantes.

Déterminer ce qu'est le multiple d'un nombre, mathématiques savantes ? Oui, bien sûr, un jour lointain, cela releva des mathématiques savantes. Et ignorer cela c'est fermer les yeux sur la difficulté de la notion, la reléguer au rang des "évidences faciles".

Et survient le second problème : si on s'en cantonne aux mathématiques du problème scolaire, n'est-ce pas un peu présomptueux d'imaginer que des élèves pourront, par l'investigation et la recherche, cerner une notion mathématique qui résista pendant des siècles aux mathématiciens les plus avancés de leur temps ? Ainsi donc l'investigation ne peut pas être généralisée, car elle partirait sinon d'un principe étonnant : les élèves apprentis mathématiciens auraient systématiquement autant de capacité de création mathématique sur une année de programme scolaire qu'une communauté de mathématiciens professionnels sur les plusieurs siècles qui leur furent nécessaires pour développer les notions de ce programme. Principe qui me semble intenable. Et qui me semble dangereux. Non seulement car cela signifieraient que ces notions sont enfantines (stricto sensu), mais aussi car cela amènerait à présumer que les notions sont d'une nature indépendante de l'être humain, puisqu'elles s'imposeraient de façon égale à tous. Or rien n'est moins vrai.
Ainsi, pourquoi les élèves ont-ils du mal à comprendre les nombres négatifs ? Parce que la notion de nombre négatif est d'une incroyable difficulté, qu'il n'est pas possible de contourner cette difficulté par des tours de passe-passe, car cette notion est étrangère à vos évidences.

Un troisième problème est connu depuis longtemps par les mathématiciens, et est très souvent source de malentendu : les définitions ne vont pas de soi, et les signifiants utilisés ne sont pas, par une sorte d'évidence mystique, associés à leurs signifiés pour des raisons linguistiques.
Je m'explique : le mot "droite" n'est pas une évidence. La définition qui lui est associée n'est pas une évidence non plus. D'ailleurs, longtemps ce mot ne fut pas canonique, et il lui fut préféré le mot "ligne". Évidemment, souvent les mathématiciens ont essayé de choisir des mots qui permettaient une mémorisation plus aisée des notions. Mais qui dit souvent ne dit pas toujours. Les droites auraient aussi bien pu s'appeler des xyrls, les segments des yxrls, les demi-droites des lsryx, etc... Notons d'ailleurs que pour un élève, le mot segment n'a le plus souvent pas d'autre signification que celle issue des mathématiques.

Cela signifie surtout, et c'est très important, que les mots choisis ne contiennent pas en eux-mêmes la définition mathématique qui leur est associée. Donner le mot aux élèves et leur demander d'en déduire le sens mathématique me semble une imposture intellectuelle vraiment dangereuse. Quel élève de troisième pourrait déduire de l'expression "nombre premier" la notion qui lui est associée ? Et comment pourrait-il en déduire les détails, quand ces détails sont issus de travaux avancés auxquels il n'a pas accès ? Par exemple, comment un élève de troisième pourrait produire que 1 n'est pas un nombre premier, et cela même s'il avait eu accès à une prénotion de "nombre premier" ?
Ainsi donc, de nombreuses notions (leurs définitions) se refuseraient à leur introduction par l'investigation, à moins de vouloir jouer avec le feu.

Mais oui, bien sûr, les élèves doivent faire des mathématiques, c'est-à-dire être en situation de faire de la recherche mathématique, sans aucun prétexte concret d'ailleurs. Et contrairement à un idée préconçue très répandue, cela les intéresse bien plus que d'appliquer des mathématiques sur du concret, pour lesquels ils sentent bien que le concret n'est qu'un prétexte (vouloir leur faire croire l'inverse c'est, il me semble, les prendre pour des imbéciles). Un exemple ? tout récemment j'ai encore été étonné de l'investissement de TOUS les élèves d'une classe sur un problème qui en substance dit : "Soient les nombres 1/2 ; 1/4 ; 1/8 ; 1/16 ; 1/32 ; 1/64. Faites une somme de certains de ces nombres (pris une seule fois), pour obtenir 11/16". (pour les détails, voir le Phare 5ème, activité "L’œil d'Horus") Pour des cinquièmes, c'est un peu plus compliqué que ça en a l'air. Et pourtant ils y ont complètement adhéré, parce qu'ils sentaient que c'était un vrai problème de mathématique, qui, de surcroit, avait interrogé de vrais mathématiciens (égyptiens, en occurrence), et non pas une histoire de gâteau divisée en n parts, inventée par un enseignant, comme prétexte pour leur faire faire des calculs.

D'ailleurs, on peut difficilement accuser les enseignants en mathématiques de ne pas pratiquer l'investigation, cela est une pratique installée depuis un nombre d'années important, la narration de recherche (présente dans de plus en plus de manuels) en est un des témoignages les plus récents (cf. brochure APMEP n°151, écrite par l'IREM de Montpellier en 2002) (ou lire la préface de Kahane à la brochure n°150 "Pour un enseignement problématisé des Mathématiques du Lycée"). Parce que mathématiques (savantes) et problèmes sont indissociables, et que le plus grand plaisir d'un professeur de mathématiques, c'est que ces élèves fassent des (vraies) mathématiques.

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mar 1 Nov 2011 - 16:06
http://www.mathkang.org/concours/midi2011q.pdf

La dernière me plait beaucoup :

Propositions de problèmes de maths pour les collègues Kang10

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
Le grincheux
Le grincheux
Sage

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Le grincheux Mar 1 Nov 2011 - 16:10
Je ramasse les copies dans une heure !

Propositions de problèmes de maths pour les collègues Random10

_________________
Le carnet du Grincheux, Chroniques de misanthropie ordinaire
http://grincheux.de-charybde-en-scylla.fr/
Ma vie, mon œuvre
http://www.systella.fr/
JPhMM
JPhMM
Demi-dieu

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par JPhMM Mar 1 Nov 2011 - 16:22
Zéro ?
Réponse 25% => une possibilité sur deux.
Réponse 50% => une possibilité sur quatre.
Réponse 60% => une possibilité sur quatre.

Donc 0%

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. — John Locke

Je crois que je ne crois en rien. Mais j'ai des doutes. — Jacques Goimard
Le grincheux
Le grincheux
Sage

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par Le grincheux Mar 1 Nov 2011 - 16:39
JPhMM a écrit:Zéro ?
Réponse 25% => une possibilité sur deux.
Réponse 50% => une possibilité sur quatre.
Réponse 60% => une possibilité sur quatre.

Donc 0%
C'est un peu court Wink

_________________
Le carnet du Grincheux, Chroniques de misanthropie ordinaire
http://grincheux.de-charybde-en-scylla.fr/
Ma vie, mon œuvre
http://www.systella.fr/
avatar
pk
Habitué du forum

Propositions de problèmes de maths pour les collègues Empty Re: Propositions de problèmes de maths pour les collègues

par pk Mar 1 Nov 2011 - 16:54
JPhMM, Le grincheux posait une question liée à ton problème en donnant la réponse. Il ironisait sur la valeur à éliminer d'emblée. J'ai peut-être raté un épisode !?
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum